

3D MicroPrint metal benchmark part to show various feature capabilities und technical specifications:

maximum load build plate 6 parts

printing time/part 32 min

component density >99 %

layer thickness 9 μm

number of layers ~ 450

material Stainless Steel

1.4404

material consumption/part 2 g

surface Ra 2 - 3 µm

total size of the part $19.1 \times 8.0 \times 5.5 \text{ mm}$

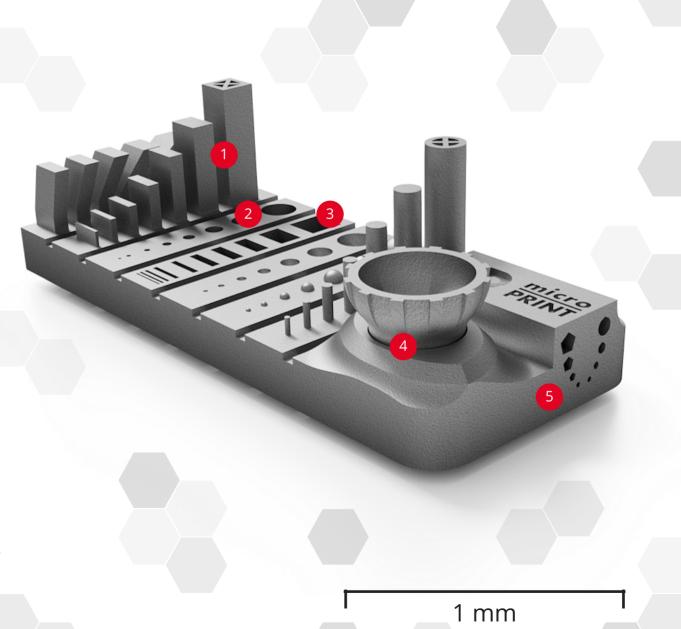
1. Wall thickness

The thicknesses of the 7 walls vary from 0.15 mm to 1.20 mm. To further reduce print volume, the biggest wall feature is hollowed with reinforcement elements - offers stability, print volume reduction for lightweight purposes or fluid applications.

2. Vertical holes

The holes have a diameter of 0.10mm, 0.15 mm, 0.20 mm, 0.30 mm, 0.40 mm, 0.60 mm, 0.80 mm and 1.20 mm.

3. Gap


The smallest functional gaps can be achieved to realise the clearance fit of moving geometries. The dimensions of the gaps can be as small as 50 µ in diameter.

4. Function integration

Elements such as the moveable and rotatable pin joint can be printed together in one process.

5. Horizontal holes

Shape like gothic arch or drop and hexagonal-shape has a self-supporting function. A great advantage, especially for channels. The smallest internal channels have a diameter of 0.15 - 0.5 mm.

3D micro PRINT

6. Pins

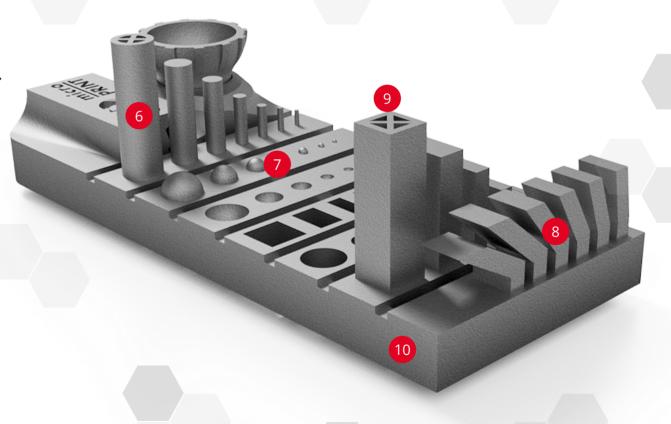
The seven pin diameters vary from 0.15 mm to 1.2 mm. To further reduce print volume, the biggest pin feature is hollowed with reinforcement elements - offers stability, print volume reduction for lightweight purposes or fluid applications.

7. Half sphere - Stair effect

Due to our precise resolution, we have a very low stair effect. Basically, the lower the layer thickness, the less the stair effect. The radius of the half sphere are 0.08 - 0.6mm.

8. Overhangs

The overhangs on the component are 80°-40°. Depending the material support free construction of overhangs with an angle down to < 30°, is possible.


9. Inner structure

One of the greatest benefits of 3D printing is the ability to produce complex internal structures that add functional engineering value.

10. Surface as printed

The as printed, unblasted surface has a surface roughness of 2 - 3 μ m.

1 mm